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Time delays often occur in engineering systems related to mechanical contact
tasks and/or control tasks with relevant information processing and transmission
time. Parametric excitation is also a typical vibration phenomenon in many
well-known engineering applications. There are not many models, however, that
combine delay and time-periodic coefficients, in spite of the fact that machine
tool vibrations and many control problems, especially digital control tasks, may
often lead to time-periodic delay differential equations with discrete delays or even
with distributed ones. A paradigm for such delayed time-periodic systems is the
delayed Mathieu equation, the stability analysis and stability charts of which will
be presented. Then the numerical method called semi-discretization is introduced
as a time-periodic perturbation of the time delay. Among the applications, the
milling process and turning with spindle-speed variation is mentioned, while the
so-called “act-and-wait” control is presented for robotic force control problems.

1. Introduction

Mathematical modeling of engineering systems with delay-differential equations has
become increasingly efficient and popular as the mathematical theory developed
during the recent decades. This process started with the proper formulation of the
infinite dimensional state spaces of these systems by Myshkis1, continued with the
generalization of Floquet Theory to delay systems by Halanay2, then followed by
the construction of a unified theory for functional differential equations by Hale3,
then by Hale and Lunel4 and many others.

However, engineering problems leading to delay-differential equation (DDE)
models appeared much earlier, and they provided a driving force for the devel-
opment of the mathematical theory. The famous population dynamics models of
Volterra5 in the 1920’s already included time delays and produced oscillatory be-
havior observed in nature even for first order scalar systems. From mechanical
engineering view-point, however, the second order models are relevant since many
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of them are based to Newton’s Laws where the acceleration appears as second
derivative of the state variable. The corresponding models are also called delayed
oscillators. These are oscillatory even without time delay, so the presence of delay
makes their dynamics quite intricate.

The classical self-excited vibrations in the delayed oscillators are described by
autonomous DDEs. Parametric excitation, however, is also an important source of
oscillations, and the corresponding delayed oscillators are often governed by time-
periodic non-autonomous DDEs. In the subsequent section of this review paper, the
delayed Mathieu equation paradigm is discussed leading to the presentation of the
corresponding stability chart. In Section 3, the basic idea of the semi-discretization
method is summarized for the numerical stability analysis of large systems. Then
two time-periodic DDE models are derived for milling processes: the first involves
time-periodic coefficients; the second involves time-periodic time delays. Finally,
the act-and-wait control concept is presented for a force-control problem with delay,
which is an application of time-periodic gains for controlling delayed oscillators.

2. Delayed Mathieu Equation

The linear non-autonomous DDEs are considered in the general form

ẏ(t) =
∫ 0

−τmax

y(t+ ϑ)dϑη(t, ϑ) , (1)

which is the representation of a linear non-autonomous functional differential equa-
tion ẏ(t) = Lyt by means of a Stieltjes-integral in accordance with the Riesz Repre-
sentation Theorem (see Hale3). Here yt(ϑ) = y(t + ϑ), ϑ ∈ [−τmax, 0] is a function
in the space C0

[−τmax,0] of continuous functions mapping the given time interval
of length τmax into R

n, and the n × n matrix η is a function of bounded varia-
tion in its second variable. If η is also time-periodic in its first variable, that is,
η(t+ T, · ) = η(t, · ), then a time-periodic DDE is presented in (1).

It is well-known that all high order differential equations can be transformed into
first order high dimensional differential equations. Since the Newtonian systems
involve second time derivatives, the simplest delayed oscillator can be represented
in the form of a 2-dimensional system. As the basic example for a delayed and
parametrically excited oscillator, let us choose the measure η in the following simple
form:

η(t, ϑ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
0 0
0 0

]
, ϑ ∈ [−4π,−2π),[

0 0
b 0

]
, ϑ ∈ [−2π, 0),[
0 1

b− (δ + ε cos t) 0

]
, ϑ = 0,

t ∈ [t0 − 2π,∞), (2a)
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and substitute it into (1) by using Stieltjes calculus dϑη( · , ϑ) =
d

dϑ
η( · , ϑ) where

η is differentiable, and dϑη( · , ϑ) = η( · , ϑ)−η( · , ϑ−0) where it is discontinuous.
The resulting periodic DDE will have the form[

ẏ1(t)
ẏ2(t)

]
=
[

0 1
−(δ + ε cos t) 0

] [
y1(t)
y2(t)

]
+
[

0 0
b 0

] [
y1(t− 2π)
y2(t− 2π)

]
. (2b)

After the introduction of the notation x := y1, this can be transformed to the scalar
second order periodic DDE

ẍ(t) + (δ + ε cos t )x(t) = bx(t− 2π) , (3)

which is also called delayed Mathieu equation, since it gives the Mathieu6 equation
for b = 0, while it describes the delayed oscillator (see Bhatt and Hsu7) for ε = 0.
This equation is special in the sense that the time-periodicity and the time delay are
both equal to 2π. Still, this special case is important since a closed form analytical
stability chart can be constructed, and also some mechanical models like those of
milling operations have the same property, the delay and the time periodicity are
just equal to each other.

The stability charts present those parameter domains where the trivial solution
x(t) ≡ 0 is stable in Lyapunov sense. For the special case b = 0, the chart in the
(δ, ε) parameter plane was constructed by van der Pol and Strutt8 and can also be
found in the book of Ince9, while the chart in the (δ, b) parameter plane for ε = 0 is
presented, for example, in the books of Stepan10, Hu and Wang11 or Michiels and
Niculescu12.

The stability chart in the 3-dimensional (δ, b, ε) parameter space can be deter-
mined by the application of the infinite dimensional extension of the Floquet theory
and the analytical calculations can be carried out by means of the generalization
of Hill’s infinite dimensional determinant method. The details of this calculation
together with its proof are presented in Insperger and Stepan13 and the resulting
stability chart is shown in Fig.1. Clearly, it is a kind of direct product of the two
special cases discussed above, that is, the stability boundaries can be obtained by

Fig. 1. Stability chart of the delayed Mathieu equation (3). Sections of stable regions are shaded.
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shifting the tongues of the Strutt-Van der Pol stability chart along the triangles of
the Bhatt-Hsu stability chart.

Along the stability surfaces, all the three kinds of possible bifurcations in periodic
systems will appear: Neimark-Sacker (or secondary Hopf), flip (or period doubling),
and fold (or secondary saddle-node) as explained by Insperger and Stepan13.

3. Semi-discretization Method for Periodic DDEs

The stability of parametrically excited delayed oscillators can rarely be studied
analytically. The delayed Mathieu equation paradigm discussed in the previous
section is one of these exceptions that serves also as a test example for checking the
numerical methods developed during the last decade, like the semi-discretization
method of Insperger and Stepan14, its version improved by Sheng, Elbeyly, and
Sun15, the time finite element method of Bayly, Halley, Mann, and Davies16, the
Chebishev polynomial method of Butcher et al.17, the pseudo-spectral method of
Breda, Maset, and Vermiglio18. In this section, the semi-discretization method is
discussed as a numerical method based on the introduction of a special time-periodic
time delay, that is, the introduction of a special parametric excitation for the delay
itself.

Consider the delayed oscillator with constant parameters c0,1 in the form of the
scalar second order autonomous DDE

ẍ(t) + c0x(t) = c1 x(t− 2π) , (4)

and also an approximating delayed oscillator

ẍ(t) + c0x(t) = c1x(t − τ(t)) (5)

with the time-periodic delay

τ(t) = t+ (m− int (t/Δt))Δt , (6)

which is periodic with the time-step Δt = 2π/(m+1/2) where m is an appropriately
chosen integer, also called approximation number. As Fig.2 shows, the constant time
delay 2π can be approximated as m→ ∞.

Fig. 2. Periodic time delays approximating constant time delay.

First, it may look unusual why an autonomous system is approximated by a
non-autonomous one, but the special time periodicity of the delay results in a piece-
wise constant term in the right-hand-side of (4) for the intervals t ∈ [ti, ti+1) =
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[ iΔt , (i+ 1)Δt ), i = 0, 1, 2, . . . since

x(t− τ(t)) ≡ x((i −m)Δt) =: xi−m. (7)

This way, an infinite series of non-homogeneous ordinary differential equations
(ODE) has to be solved with concatenated initial conditions:

ẍ(t) + c0x(t) = c1xi−m, x(ti) = xi, ẋ(ti) = ẋi . (8)

By means of the initial conditions, the coefficients K1i,K2i in the general solution

x(t) = K1i cos(
√
c0t) +K2i sin(

√
c0t) +

c1
c0
xi−m, t ∈ [ti, ti+1) (9)

can be expressed by means of xi, ẋi, xi−m. Consequently, when xi+1 := x(ti+1) =
x(ti + Δt) is calculated in (9), then xi+1 can be expressed as a linear combination
of xi, ẋi, xi−m. The same calculation can be repeated for ẋi+1. If all these values
are collected in the vector yi = col (ẋi xi xi−1 · · · xi−m) ∈ R

m+2, then a linear
map is compiled and the so-called characteristic multipliers are calculated

yi+1 = Ayi ⇒ det(μ I− A) = 0 ⇒ μ1,2,...,m+2. (10)

The coefficient matrix A is a constant and all its elements are expressed by the
coefficients c0,1 of the original delayed oscillator (4) and the approximation param-
eter m. The stable parameter regions in the parameter plane are determined by
the condition |μ1,2,...,m+2| < 1. The larger m is, the better the stability chart is ap-
proximated, as it is shown in Fig.3. For m = 10, the exact triangle-shaped stability
chart (see the shaded regions for ε = 0 in Fig.1.) is already well approached.

Fig. 3. Approximate stability charts of the delayed oscillator (4). Stable regions are shaded.

A piece-wise constant approximation for the Mathieu equation

ẍ(t) + (δ + ε cos t)x(t) = 0 (11)

is already a well-known method in the form

ẍ(t) + c0ix(t) = 0, x(ti) = xi, ẋ(ti) = ẋi (12)
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for t ∈ [ti, ti+1) = [ iΔt , (i + 1)Δt ), Δt = 2π/m with c0i = δ + ε cos ti (see also
Fig.4).

Fig. 4. Approximation of harmonic parameter excitation in the Mathieu equation.

The piece-wise specific solution of (12) is

x(t) = xi cos (
√
c0i(t− ti)) +

ẋi√
c0i

sin (
√
c0i(t− ti)) , t ∈ [ti, ti+1) , (13)

which means that again, the calculation of xi+1 := x(ti+1) = x(ti + Δt) leads to
the construction of a discrete map for the vector yi = col(xi ẋi) ∈ R

2 in the form

yi+1 = Ayi, Ai =

⎛
⎜⎝ cos

(
Δt

√
c0i

) sin
(
Δt

√
c0i

)
√
c0i

−√
c0i sin

(
Δt

√
c0i

)
cos
(
Δt

√
c0i

)
⎞
⎟⎠ . (14)

Then the subsequent application of this iteration provides the mapping of the vector
between two time periods:

ym = (Am−1Am−2 · · ·A0)y0 ⇔
(
x(t+ 2π)
ẋ(t+ 2π)

)
= Φm(2π)

(
x(t)
ẋ(t)

)
, (15)

where Φm(2π) is the mth approximation of the so-called principal matrix of Floquet
theory, the two eigenvalues of which determine the stability of the trivial solution
in the same way as above, that is, their modulus has to be checked:

det(μ I − Φ (2π)) = 0 ⇒ |μ1,2| ≤ 1 ⇔ stability. (16)

Figure 5 shows the result of a calculation like this for the simplest case m = 2
when the calculation can still be carried out in closed form. This so-called
Meissner19 diagram already approximates the stable tongues of the stability chart
in Fig.1 for the section b = 0 quite well.

The combination of the two approximations, namely, the combination of the
time-periodic delay and the piece-wise constant periodic parametric excitation is
quite straightforward and the finite dimensional approximation of the infinite di-
mensional principal operator of the Floquet theory can be given for any approxi-
mation number m. Consequently, the combination of examples (4) and (11) with
increasing m converges to the stability regions of the delayed Mathieu equation
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Fig. 5. Stable regions (S) of approximated harmonic parametric excitation equation (12) for
m = 2.

in Fig.1. The method can be generalized to any linear time-periodic functional
differential equation of the form (1) as proved by Insperger, Stepan, and Turi20.

As an example, the stability chart of the damped delayed Mathieu equation

ẍ(t) + κẋ(t) + (δ + ε cos t )x(t) = bx(t− 2π) (17)

is presented in Fig.6 for ε = 1 and different values of the damping parameter κ .

Fig. 6. Stable regions (S) of damped delayed Mathieu equation (17) by semi-discretization.

4. Engineering Applications

In the subsequent subsections, three engineering applications are presented where
the mechanical models lead to the parametric excitation of delayed oscillatory sys-
tems and the stability analyses of the trivial solutions provide relevant information
for the design and development of these structures.

4.1. Modeling and Stability of Milling Operations

Machine tools often have a characteristic lowest vibration mode. If this mode is
approximated by a single degree-of-freedom oscillator of mass m, stiffness k, and
(small) damping b, a parametrically excited delayed oscillator model can be derived
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to describe the most critical vibrations of machine tools called chatter or regenera-
tive vibrations.

The cutting force Fj acting on the jth cutting edge of the finger-like milling tool
depends on the actual chip thickness h(t) at the time instant t, and its variation
can be approximated as a linear function of the chip thickness variation, which is
proportional to the difference of two cutting edge positions: one is the past position
of the preceding cutting edge at the time instant when it passed the same angular
position, the other is the present position of the cutting edge. The resultant cutting
force is the sum of the cutting force vectors acting at those cutting edges that are
in contact with the workpiece. This leads to the mathematical model

mẍ(t) + bẋ(t) + kx(t) = k1(t) (x(t − τ) − x(t)) , k1(t+ τ) = k1(t). (18)

Fig. 7. Single degree-of-freedom mechanical model of milling.

The so-called cutting coefficient k1(t) is time-periodic with the time delay due
to the periodic entering and leaving of the cutting edges into and from the material
of the workpiece with the angular velocity Ω, that is, the period and the delay are
both τ = 2π/Ω (see details in Insperger, Stepan, Bayly, and Mann21).

The governing equation (17) is a generalized damped and delayed Mathieu equa-
tion with time-periodic parameters both in the stiffness and the gain parameter.
The corresponding stability chart in Fig.8 is constructed by means of the semi-
discretization method.

As predicted by the analytical stability chart of the delayed Mathieu equation,
both Neimark-Sacker (that is, secondary Hopf) and flip (that is, period dobling)
bifurcations occur at the stability limits. Figure 8 also shows the corresponding vi-
bration frequencies at the stability limits and a typical time-variation of the cutting
coefficient. All the parameters are dimensionless in the diagram, tilde refers to time-
average value, N = 4 is the number of cutting edges, fn = ωn/(2π) =

√
k/m/(2π)

is the natural frequency of the machine tool structure.
The stability charts, like the one in Fig.8, help engineers to design optimal

cutting parameters where the material removal rate (MRR) is the largest, that is,
the average cutting coefficient is maximized within the stability limit since it is
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Fig. 8. Typical stability chart of full immersion milling operation and frequencies of self-excited
vibrations at the stability limits also called lobes.

linearly proportional to the average chip width.

4.2. Cutting with Varying Spindle Speed

When turning processes are modeled as shown in Fig.9, the cutting coefficient is
constant since there is always one cutting edge in contact with the workpiece. This
means that there is no time-periodic stiffness or gain parameter in the governing
equation, consequently, no flip bifurcations appear in the stability charts, only Hopf
bifurcation occurs with a single frequency in it.

Fig. 9. Mechanical model of turning processes and the definition of the cutting coefficient k1.

Still, the equation of motion includes time delay that is inversely proportional
to the cutting speed v in the same way as explained above for milling. Parametric
excitation can also be introduced by means of the periodic variation of the cutting
speed, which results in a time-periodic time delay in the equation of motion:

mẍ(t) + bẋ(t) + kx(t) = k1 (x(t− τ(t)) − x(t)) , τ = τ0 + τ1 cos(ωmt). (19)

Now, the time period 2π/ωm of the time delay is, of course, different from the time
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delay itself, but it can also be independent of the average value τ0 of the delay. The
stability chart of (19) is presented in Fig.10.

Fig. 10. Stability chart of (19) for spindle speed variation (continuous line) and for constant
cutting speed (dashed line).

The stability chart of Fig.10 is presented with continuous lines for Tm/τ0 =
2π/(ωmτ0) = 2 and τ1/τ0 = 0.1 in case of spindle speed variation, while the stabil-
ity boundaries are also presented with dashed lines for constant spindle speed when
τ1/τ0 = 0. The calculations were carried out by the semi-discretization method in
Insperger and Stepan22. The improvement in the stability of the turning process
may be relevant for low cutting speeds when large periodic perturbation is intro-
duced at the spindle speed. Similar results were obtained by Faassen, van de Wouw,
Nijmeijer, and Oosterling23.

4.3. Act-and-wait Control of Force Controlled Robots

Force control of robots often becomes unstable due to the presence of digital effects
and time delays in the control loop. Figure 11 presents a single degree-of-freedom
model of force control where the uncontrolled system has an undamped angular
natural frequency ωn and damping ratio ζ. The sampling time in the digital control
is denoted by Δt, and we consider a time delay in the loop which is characterized
by the integer r referring to a delay rΔt in the loop.

Fig. 11. Mechanical model of force control with act-and-wait feedback.
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The desired contact force is Fd = kqd where q denotes the position of the robotic
arm that touches the environment via the spring of stiffness k, while the measured
or sensed force is Fm = kq. The traditional proportional control applies the control
force

Q(t) = Fd − P (Fm(tj−r) − Fd), t ∈ [tj , tj+1), tj = jΔt, j = 0, 1, 2, . . . , (20)

where P is a dimensionless proportional gain and tj is the jth sampling instant
of the digital control. In the presence of a Coulomb friction force C, this results
in a static force error Fe = C/(1 + P ) around the desired force Fd, which can be
decreased by the increase of the gain P . However, there is a maximum value for
the gain P above which the desired position of the system becomes unstable and
self-excited vibrations appear. The larger the sampling time Δt and/or the time
delay rΔt are, the smaller this maximal gain is, and consequently, the larger the
static error of the system is.

The application of a time-periodic gain in the control loop gives the possibility
to increase the maximum values of the gain and so to decrease the static force error.
As it is explained in the introduction of the so-called act-and-wait control strategy
by Stepan and Insperger24, a quasi optimal time-periodicity is achieved when the
proportional control is switched on and off, as represented in Fig.11 by the sΔt
periodicity of the control force in Fig.11:

Qa&w(t) =
{
Fd − P (Fm(tj−r) − Fd), if t ∈ [ths, ths+1), h ∈ Z ,

Fd, otherwise
(21)

with subscript a&w referring to act-and-wait.
If the small perturbation x is introduced by q(t) = qd + x(t) around the desired

position of the system, the equation of motion assumes the form

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = −gjω

2
nPx(tj−r) , t ∈ [tj , tj+1) , (22)

where a switching function gj is introduced by

gj =
{

1, if j = hs, h ∈ Z,

0, otherwise
(23)

corresponding to the act-and-wait control force (21). The actual interpretation of
(22) is that it is a time periodic DDE with a piece-wise constant periodic parametric
excitation at the gain and a piece-wise linear parametric excitation at the time delay.
The stability of the trivial solution can be analyzed directly in the discrete state
space representation with y = col(x ẋ) ∈ R

2:

y(j + 1) = Qy(j) + Rw(j − r),
w(j) = gjHx(j),

(24)

where the matrices are defined as

Q = exp(AΔt) , R = (exp(AΔt) − I)A−1B , H = [−ω2
nP, 0 ] , (25)
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and the matrices A and B are given by the DDE (22) in the form

A =
[

0 1
−ω2

n −2ζωn

]
, B =

[
0
1

]
. (26a)

In the same way as the semi-discretization method was introduced, a discrete map⎡
⎢⎢⎢⎢⎢⎣

y(j + 1)
w(j)

w(j − 1)
...

w(j − r + 1)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
zj+1

=

⎡
⎢⎢⎢⎢⎢⎣

Q 0 · · · 0 R
gjH 0 · · · 0 0
0 I · · · 0 0
...

...
...

...
0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Gj

⎡
⎢⎢⎢⎢⎢⎣

y(j)
w(j − 1)
w(j − 2)

...
w(j − r)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
zj

(26b)

can be constructed where the coefficient matrix varies with periodicity s in accor-
dance with the definition of the switching function gj in (23). If the discrete maps
are concatenated, the linear discrete map has the form

zs = Gs−1 · · ·G1G0z0 ⇒ zs = Gs−1
1 G0z0 ⇒ zs = Φr,sz0 , (27)

where the matrix Φr,s is the actual form of the principal operator of the periodic
DDE (23) with periodicity s and delay r.

It is shown by Insperger, Wahi, Colombo, Stepan, di Bernardo, Hogan25 that the
largest stable parameter domains can be achieved when the period s is just larger
than the delay r, so when s = r+1, as it is also represented in Fig.11. The stability
chart in Fig.12 is constructed for the modal parameters of a Hirata robot used in
laboratory experiments. The stability limits and the frequencies of the emerging
self-excited vibrations are presented by grey lines for constant proportional gains
and by black lines for periodically varying gains with r = 1, s = 2. Apart of the
Hopf bifurcation, flip bifurcations can occur in case of the act-and-wait control,
while the maximal gains within the stability limits are doubled in this case, which
means that the static force error is reduced by a factor of 2.

These theoretical predictions were also confirmed experimentally in Insperger,
Kovacs, Galambos, and Stepan26 where the force control of a Hirata robot was
established: the robotic arm pushed a helical spring with a prescribed (or desired)
contact force against a fixed wall. After the accurate identification of the modal
parameters, the above calculations were repeated and the theoretical and the ex-
perimental results are compared in Fig.12.

5. Conclusions

Parametric excitation may cause vibration phenomena that are often difficult to
handle in certain engineering tasks. Time delays may also cause unexpected self-
excited vibrations even for very small delays. When parametric excitation appears
in combination with time delays, the emerging vibrations are often intricate, quasi
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Fig. 12. Force controlled Hirata robot in laboratory experiments and experimental stability
chart with measured and theoretically predicted vibration frequencies of self-excited vibrations
originated in Hopf and period doubling bifurcations.

periodic or even chaotic, and it is difficult to find where and how to tune the system
parameters to eliminate them.

The mathematical models of parametrically excited delayed oscillators are time-
periodic delay-differential equations. Their linearization and stability analysis re-
quires the application of an infinite dimensional Floquet theory. The application of
the theory for engineering problems is difficult due to the lack of analytically proven
reference examples and efficient numerical methods.

The delayed Mathieu equation paradigm is an essential example for a delayed
oscillator subjected to harmonic parametric excitation at the stiffness. The stability
chart was constructed analytically, which means that it can serve as a reference
example for testing numerical methods. Among the numerical methods, the basic
idea of the semi-discretization method was described (see Insperger and Stepan27)
as a time-periodic perturbation of the time delay.

The efficiency of the introduced method was presented in case of three relevant
engineering problems. In case of cutting operations, the time delay occurs due to
the contact of the tool and the workpiece. Milling operations involve time periodic
parametric excitation with time period equal to the time delay. In case of turning,
this kind of parametric excitation cannot occur, but the time-periodic spindle speed
variation results parametric excitation at the delay. This can be used to improve the
stability properties of turning processes. The third example discussed in this study
is the act-and-wait force control, where time periodic gains are used to improve the
stability properties and to decrease the static force error of force controlled robots.
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The exploration of the stability properties of time-periodic delayed oscillators
partly helps understanding the peculiar vibration properties of these systems, partly
it helps to explore new parameter domains where those delayed systems can be
stabilized with parametric excitation, which would be unstable otherwise.
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